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Abstract

Invariance and equivariance to the rotation group have
been widely discussed in the 3D deep learning community
for pointclouds. Yet most proposed methods either use com-
plex mathematical tools that may limit their accessibility,
or are tied to specific input data types and network archi-
tectures. In this paper, we introduce a general framework
built on top of what we call Vector Neuron representations
for creating SO(3)-equivariant neural networks for point-
cloud processing. Extending neurons from 1D scalars to
3D vectors, our vector neurons enable a simple mapping of
SO(3) actions to latent spaces thereby providing a frame-
work for building equivariance in common neural opera-
tions – including linear layers, non-linearities, pooling, and
normalizations. Due to their simplicity, vector neurons are
versatile and, as we demonstrate, can be incorporated into
diverse network architecture backbones, allowing them to
process geometry inputs in arbitrary poses. Despite its sim-
plicity, our method performs comparably well in accuracy
and generalization with other more complex and special-
ized state-of-the-art methods on classification and segmen-
tation tasks. We also show for the first time a rotation equiv-
ariant reconstruction network. Source code is available at
https://github.com/FlyingGiraffe/vnn.

1. Introduction
With the proliferation of lower-cost depth sensors, learn-

ing on 3D data has seen rapid progress in recent years. Of
particular interest are pointcloud networks, such as Point-
Net [27] or ACNe [33] that fully respect the inherent set
symmetry – that point sets are not ordered – by incorpo-
rating order-invariant and/or order-equivariant layers. Yet,
there are other important symmetries that have been less
perfectly addressed in the context of pointcloud process-
ing, with 3D rotations being a prime example. Consider
a scenario where one scans an object using their LIDAR-
equipped phone to retrieve similar objects. Clearly, the
global object pose should not affect the query result. Point-
Net uses spatial transformer layers [16], which only attain

Figure 1: By lifting latent representations from vectors of
scalar entries to vectors of 3D points (i.e., matrices) we fa-
cilitate the creation of a simple rotation equivariant toolbox
allowing the implementation of fully equivariant pointcloud
networks.

approximate pose invariance while also requiring extensive
augmentation at train time.

To avoid an exhaustive data augmentation with all pos-
sible rotations, there is a need for network layers that are
equivariant to both order and SO(3) symmetries. Recently,
two approaches have been introduced to tackle this set-
ting: Tensor Field Networks [35] and SE(3)-Transformers
[14]. While guaranteeing equivariance by construction,
both frameworks involve an intricate formulation and are
hard to incorporate into existing pipelines as they are re-
stricted to convolutions and rely on relative positions of ad-
jacent points.

In this work, we address these issues by proposing a
simple, lightweight framework to build SO(3) equivariant
and invariant pointcloud networks. A core ingredient in our
framework is a Vector Neuron (VN) representation, extend-
ing classical scalar neurons to 3D vectors. Consequently,
instead of latent vector representations which can be views
as ordered sequences of scalars, we deploy latent matrix
representations which can be viewed as (ordered) sequences
of 3-vectors. Such a representation supports a direct map-
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Figure 2: Linear layer – Typical neural networks today are
built with “scalar” neurons – where the output of the non-
linearities in a given layer is an ordered list of scalars. We
extend deep networks to allow for “vector” neurons – where
the output of the non-linearity is an ordered list of vectors.

ping of rotations applied to the input pointcloud to inter-
mediate layers. This is in contrast to more complex solu-
tions based on Wigner D-matrices [8]. Another appealing
property of VN representations is that they remain equiv-
ariant to linear layers by construction. The challenge in
building a fully-equivariant network lies in the non-linear
activations. In particular, standard neuron-wise activation
functions such as ReLU will not commute with a rotation
operation. A key contribution in this work is a 3D gener-
alization of classical activation functions by implementing
them through a learned direction. For example, when ap-
plied to a vector neuron, a standard fixed direction ReLU
activation would simply truncate the half-plane that points
in its opposite direction. Instead, dynamically predicting an
activation direction in a linear data-dependent fashion al-
lows us to guarantee equivariance. We further provide an
invariant pooling operation as well as normalization lay-
ers, which altogether render our framework compatible with
various pointcloud network backbones. To demonstrate
its versatility and efficiency, we implemented vector neu-
ron versions of two popular architectures: PointNet and
DGCNN, and tested them on three different downstream
tasks: classification (permutation invariant and rotation in-
variant), segmentation (permutation equivariant and rota-
tion invariant), and reconstruction (rotation equivariant on
the encoder side, and rotation invariant on the decoder side).
Despite its simplicity and lightweight architecture, in all
tasks, our VN achieved top performance when tested on ran-
domly rotated shapes compared with other equivariant ar-
chitectures, and markedly improved performance compared
to augmentation-induced equivariance approaches.

To summarize, our key contributions are:

• We propose a new versatile framework for constructing
SO(3)-equivariant pointcloud networks.

• Our building blocks are lightweight in terms of the num-
ber of learnable parameters and can be easily incorporated
into existing network architectures.

• We support a variety of learning tasks, in particular, we

are the first to demonstrate a 3D equivariant network for
3D reconstruction.

• When evaluated on classification and segmentation, our
VN version of popular non-equivariant architectures
achieve state-of-the-art performance.

2. Related Work

The lack of robustness to rotation in classical point-
cloud deep learning architectures like PointNet [27], Point-
Net++ [28], DGCNN [38], PCNN [2], PointCNN [21] (and
many others) has driven interest for rotation invariant and
equivariant designs. In recent years, the field of rotation
invariant and equivariant deep learning for geometry pro-
cessing has been rapidly developing. In what follows, we
briefly review methods that achieve invariance and equiv-
ariance, including those that achieve equivariance via pose
estimation.
Rotation invariant methods. Rotation invariance is a de-
sirable property for tasks like shape classification or seg-
mentation. Many rotation invariant architectures [22, 26,
6, 43, 45, 19, 46, 29] have been proposed to address these
issues. For example, [6, 43, 45, 19] introduce cleverly
designed rotation invariant operations. GC-Conv [45] re-
lies on multi-scale reference frames based on PCA. RI-
Framework [19] and LGR-Net [46] pairs local invariant in-
formation with global context, some of which like LGR-Net
[46] use surface normals in addition to the points coordi-
nates. SFCNN [29] proposes an approach similar to multi-
view by mapping input pointclouds to a sphere and perform-
ing operations on the sphere. Other works like [22, 26] rely
on more principled approaches borrowing tools from equiv-
ariant deep learning.
Rotation equivariant methods. Recently, rotation equiv-
ariant architectures have emerged. A whole body of work is
built on the theory of SO(3) representations [35, 17, 12, 39,
1, 32, 14, 25] – most of these works rely on the concept of
convolution with steerable kernel bases. A steerable kernel
basis is a family of function undergoing a rotation in func-
tion space given a rotation of their input parameter. Features
computed through these convolution inherit this equivariant
behavior. A rotation of the object in Euclidean space in-
duces a rotation of the features in feature space. We refer to
[18] for a general theory of steerable kernels. Other works
like EMVnet [13] considers a multi-view image based rep-
resentation of the shapes based on renderings of meshes. In
the context of pointcloud network, the universality of rota-
tion equivariance has been studied in [11].
Equivariance via pose estimation. Qi et al. [27] achieved
approximate pose equivariance by factoring out SO(3)
transformations through object pose estimation. Most
works in the literature study instance-level pose estimation,
where the ground-truth canonical pose of the 3D CAD mod-
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els corresponding to the input pointcloud is available [4].
More recently Wang et al. [37] introduced category-level
pose estimation, and its extension to articulated objects has
also been proposed [20]. While both methods [37, 20]
need explicit 2D-to-3D supervision, relaxing supervision
is possible by borrowing ideas from Transforming Auto-
Encoders [15, 30, 40, 10]. However, while Sun et al. [34]
learns category-level as well as multi-category pose estima-
tion in a fully unsupervised fashion, the underlying equiv-
ariant backbone [33] is only equivariant by augmentation.

3. Method
We introduce Vector Neuron Networks (VNNs), a

straightforward extension to classical ReLU networks that
provides SO(3) equivariance by construction. Neurons in
standard artificial neural networks are built from scalars z ∈
R. When stacked into an ordered list, these neurons form a
C(d) dimensional latent feature z=[z1, z2, · · · , zC(d) ]⊤ ∈
RC(d)

, where (d) indexes the layer depth1.
However, when processing data embedded in R3 like 3D

pointclouds, realizing the effect of SO(3) transformations
applied to the input shape on these vector hidden layers is
not obvious. In particular, here we are interested in con-
structing rotation-equivariant learnable layers, namely lay-
ers that commute with the action of the rotation group.

To this end, we propose to “lift” the neuron representa-
tion from a scalar z ∈ R to a vector v ∈ R3, leading to what
we call a Vector Neuron (VN). This results in list of Vector
Neurons (matrix) V =[v1,v2, · · · ,vC ]

⊤ ∈ RC×3. Similar
to standard latent representations, this vector-list feature can
be used to encode an entire 3D shape, part of it, or a single
point. In particular, when representing an (order-less) set of
N points X = {x1,x2, · · · ,xN} ∈ RN×3 in a pointcloud
we can consider a collection of N such vector-list features
V = {V1,V2, · · · ,VN} ∈ RN×C×3. Similar to standard
neural networks, the number of latent channels C(d) can
change between layers via a mapping:

V(d+1) = f(V(d); θ) : RN×C(d)×3 → RN×C(d+1)×3, (1)

where θ represents learnable parameters.
Using this representation, the action of a rotation is made

simple to implement, as it involves the application of a stan-
dard rotation matrix. Critically, we require that the mapping
satisfies rotation equivariance, namely, for any rotation ma-
trix R ∈ SO(3):

f(VR; θ) = f(V; θ)R, (2)

where we interpret the application of the rotation matrix
to the set as VR = {ViR}Ni=1. To facilitate equivariance

1For ease of notation, in what follows we will remove the layer index d
whenever it is clear from context. Keep in mind that the operations we
introduce are per-layer.

Figure 3: Non-linearity – Our non-linearity generalizes
ReLU by acting on vectors rather than scalar inputs, and is
parametric with respect to a learned direction k: (left) when
the input feature q lies in the half-space defined by k, the
feature stays unchanged; (right) when the input feature q
lies in the half-space defined by −k, the feature component
in that half-space is clipped. See equation 6.

in standard pointcloud network architectures, we construct
VN layers following traditional designs via a combination
of a linear map (Section 3.1) followed by a per-neuron non-
linearity (Section 3.2). We additionally introduce equivari-
ant pooling (Section 3.3) and normalization layers (Sec-
tion 3.4). With these building blocks we are able to as-
semble a rich variety of complex neural networks in equiv-
ariance, including the most basic VN Multi-Layer Percep-
tron (VN-MLP) as a sequence of alternating linear and non-
linear layers.

3.1. Linear layers – Figure 2

We begin by realizing the mapping f introduced in equa-
tion 1 as a linear operator – a fundamental module of neural
networks. Given a weight matrix W ∈ RC′×C , we define
a linear operation flin(·;W) acting on a vector-list feature
V ∈ V ∈ RN×C×3 as follows:

V ′ = flin(V ;W) = WV ∈ RC′×3. (3)

We verify that a rotation matrix R ∈ SO(3) commutes with
this linear layer:

flin(V R;W) = WV R = flin(V ;W)R = V ′R, (4)

yielding the desired equivariance property. Note that we
omit a bias term as an addition of a constant vector that
would interfere with equivariance. Further, note that while
this layer is SO(3) equivariant, we can achieve SE(3) equiv-
ariance by centering V at the origin. Finally, depending on
the setting, W may or may not be shared across the ele-
ments V of V .

3.2. Non-linear layers – Figure 3 and Figure 4

Per-neuron non-linearity is key to the representation
power of neural networks. As evident from recent literature,
especially useful are functions that split the input domain
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Figure 4: Non-linear layer – Our VN non-linearity is para-
metric in a learned direction k, derived from the input fea-
tures via a learnable linear layer.

into two half spaces and map them differently (e.g. ReLU,
leaky-ReLU, ELU, etc.). In the case of VN, a 3D version of
these non-linearities, V ′ = fReLU(V ), is needed. Yet, com-
mitting to a fixed frame (i.e., one that does not depend on
the input pose) like the standard coordinate system would
violate equivariance. Instead, we propose to dynamically
predict a direction from the input vector-list feature. We
then generalize the classical ReLU by truncating the por-
tion of a vector that points into the negative half-space of
the learned direction.

More formally, given an input vector-list feature V ∈
RC×3, for each output vector-neuron v′ ∈ V ′ we learn two
weight matrices W ∈ R1×C and U ∈ R1×C , linearly map-
ping the input feature V to a feature q ∈ R1×3 and a direc-
tion k ∈ R1×3:

q = WV , k = UV . (5)

We then define the output VN as:

v′ =

®
q if ⟨q,k⟩ ⩾ 0

q −
¨
q, k

∥k∥

∂
k

∥k∥ otherwise,
(6)

resulting in an output vector-list: fReLU(V ) = [v′]Cc=1
2.

As illustrated in Figure 3, q can be decomposed into two
components: q∥ and q⊥ that are parallel and orthogonal to
k, respectively. Analogous to the standard scalar ReLU, we
apply the nonlinear function to q∥ along the direction k by
clipping q∥ to zero, while keeping q⊥ unchanged. Other
types of split-case functions (e.g. leaky-ReLU) follow im-
mediately from this definition. We discuss these and other
types of non-linearities in the supplementary material.

It is easy to verify that fReLU is rotation equivariant. In
particular, both q and k are linear maps of V and thus com-
mute with a rotation matrix as discussed in (4). Moreover,
the inner-product term in the second case would cancel out
an orthogonal matrix ⟨qR,kR⟩ = ⟨q,k⟩ resulting in a
scalar multiplication of a k, which is again equivariant.

2In practice, when computing for the unit direction vector k/∥k∥ we
implement k/(∥k∥+ε) with a small margin ε in the denominator to avoid
division by zero at the origin

Figure 5: Normalizations – B,C,N stand for the batch,
channel, and point dimensions respectively. (Top) classical
scalar neurons; (bottom) vector neurons, batch normaliza-
tion can only be done on vector norms as features within a
batch are from different poses.

3.3. Pooling layers

Pooling is widely used when aggregating local/global
neighbourhood information, either spatially (e.g. Point-
Net++) or by feature similarity (e.g. DGCNN). While mean
pooling is a linear operation that respects rotation equivari-
ance, we also define a VN max pooling layer as a counter-
part to the classical max pooling on scalars.

For global pooling, we are given a set of vector-lists
V ∈ RN×C×3. We learn an element-wise signal of data de-
pendent directions K ∈ RN×C×3. Similarly to Section 3.2,
these directions are obtained via applying a weight matrix
W ∈ RC×C to each Vn ∈ V:

K = {WVn}Nn=1, (7)

and then computing the element of V that best aligns with
K and selecting it as our global feature: for each channel
c ∈ [C],

fMAX(V)[c] = Vn∗ [c] (8)
where n∗(c) = argmax

n
⟨WVn[c],Vn[c]⟩. (9)

where Vn[c] stands for the vector channel vc ∈ Vn.
Similarly, we can aggregate information locally (local

pooling) by grouping k nearest neighbours in V and per-
form the aforementioned pooling seperately for each group.

3.4. Normalization layers – Figure 5

Normalization often give rise to significant performance
improvements. Layer [3] and instance normalizations [36]
are done pre-sample (and the latter also per channel) and
thus can be trivially generalized to VN networks, where the
distributions are normalized with respect to vector distribu-
tions in R3.
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Batch normalization. In contrast to other forms of normal-
izations, batch normalization aggregates statistics across all
batch samples. While technically possible, in the context
of rotation equivariant networks, averaging across arbitrar-
ily rotated inputs would not necessarily be meaningful. For
example, averaging two input features rotated in opposite
directions would zero them out instead of producing that
feature in a canonical pose.

We instead apply batch normalization to the invariant
component of the vector-list features, by normalizing the
2-norms of the vector-list features.

Given a batch of B vector-list features {Vb}Bb=1 with
each Vb ∈ RC×3, our batch normalization is defined as:

Nb = ElementwiseNorm(Vb) ∈ RN×1 (10)

{N ′
b}Bb=1 = BatchNorm

(
{Nb}Bb=1

)
(11)

V ′
b [c] = Vb[c]

N ′
b[c]

Nb[c]
, ∀ c ∈ [C], (12)

where V ′
b [c],Vb[c] are the vector channels, N ′

b[c],Nb[c]
are their scalar 2-norms, and ElementWiseNorm(Vb) com-
putes the 2-norm of every vector channel vc = Vb[c] ∈ Vb.

3.5. Invariant layers

General invariant architectures are comprised of equiv-
ariant layers followed by invariant ones. We now introduce
our invariant layer, that can be appended as needed to the
output of the equivariant VN layers. Rotation-invariant net-
works are essential for both classification and segmentation
tasks, where the identity of an object or its parts should be
invariant to pose.

Key to our approach is the idea that the product of an
equivariant signal V ∈ RC×3 by the transpose of an equiv-
ariant signal T ∈ RC′×3 is rotation invariant:

(V R)(TR)⊤ = V RR⊤T⊤ = V T⊤. (13)

Note that a specific case of (13) is the inner product of two
vectors, in particular the norm of equivariant vector features
is rotation invariant.

We could compute an invariant feature from a vector-list
V ∈ RC×3 as the Gram matrix V V ⊤. However, this would
result in a large O(C2) storage complexity. We could also
consider taking the norm of each row of V but this would
result in the loss of the relative directional information be-
tween the rows. Instead we propose a scalable solution with
more manageableO(C) complexity that can preserve direc-
tional information.

Our idea is to produce a coordinate system T ∈ R3×3

from V and read V in this coordinate system thus produc-
ing rotation invariant features. In practice we consider our
usual set of equivariant vector-list feature V ∈ RN×C×3.
Inspired by Maron et al. [23], we produce a matrix Tn for

each element by concatenating its feature Vn ∈ RC×3 with
the global mean V := 1

N

∑
n Vn ∈ RC×3 and running

through a vector neuron MLP with a target number of chan-
nel C ′ = 3:

Tn := VN-MLP([Vn,V ]) (14)

Finally we define our invariant layer by:

VN-In(Vn) := VnT
⊤
n . (15)

4. Network Architectures
We now show how we can plug vector neurons into

two widely used 3D learning architectures, PointNet [27]
and DGCNN [38]. These two backbones are representa-
tive of the richness of pointcloud networks, as PointNet is
free from convolutions, and DGCNN comprises convolu-
tions but the message passing is on dynamic graphs whose
edges are not directly embedded in R3. As we show next,
VN networks fit well into these backbones, while previous
convolution-based methods such as TFN [35] and EGCL
[31] do not. To make clear the ease of generalization, in the
following we will adopt a naming convention to the func-
tions defined in section 3 by using a “VN” prefix.
VN-DGCNN. DGCNN performs a permutation equivariant
edge convolution by computing adjacent edge features e′nm
followed by a local max pooling:

e′nm = ReLU(Θ(xm − xn) + Φxn) (16)
x′
n = Poolm:(n,m)∈E(e

′
nm), (17)

where xn ∈ R3 are per-point features and Θ,Φ are learn-
able weight matrices. Our VN-DGCNN requires a straight-
forward modification:

E′
nm = VN-ReLU(Θ(Vm − Vn) + ΦVn) (18)
V ′
n = VN-Poolm:(n,m)∈E(E

′
nm) (19)

using our vector-list representation Vn ∈ RC×3.
VN-PointNet. PointNet approximates a permutation sym-
metric function using

x′ = Poolxn∈X (h(x1), · · · , h(xN )), (20)

where h is the same for all xn. Its VN version is written as

V ′ = VN-PoolVn∈V(f(V1), · · · , f(VN )), (21)

where f is a shared VN-MLP. One issue here exists in the
first input layer where the input pointcloud coordinates Vi

are R1×3 vectors and thus applying f to them would de-
generate to a set of RC×3 vector-lists whose vector compo-
nents are all linearly dependent (pointing to one direction).
This is analogous to applying a per-pixel 1×1 convolution
to a gray-scale image (single input channel). Therefore, in
VN-PointNet we add an edge convolution at the input layer,
mapping R1×3 features into RC×3 with C > 1 and then
continue with per-point VN-MLP operations.
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5. Experiments

We evaluate our method on three core tasks in pointcloud
processing: classification (Section 5.1), segmentation (Sec-
tion 5.2), and reconstruction (Section 5.3). In addition to
their diversity in the required output, these tasks span dif-
ferent use cases of our proposed equivariant framework:
classification and segmentation are rotation-invariant tasks,
while reconstruction is rotation-equivariant.

Datasets. We employed the ModelNet40 [5] and the
ShapeNet [5] datasets for evaluation. The ModelNet40
dataset consists of 40 classes with 12,311 CAD models in
total. We used 9,843 models for training and the others for
testing in the classification task. For the ShapeNet dataset,
we followed [42] by using ShapeNet-part for part segmenta-
tion, which has 16 shape categories with more than 30,000
models. We also applied the subset of ShapeNet in [7]
for shape reconstruction, containing 13 major categories
with 50,000 models.

Train/test rotation setup. In classification and segmen-
tation, following the conventions from Esteves et al. [12],
we adopt three train/test settings: z/z, z/SO(3) and
SO(3)/SO(3), where z stands for data augmentation with
rotations only around the z axis, and SO(3) for arbitrary ro-
tations. All rotations are generated on the fly at the training
time, thereby comparing the equivariance-by-construction
of VN architectures with a learned-by- augmentation equiv-
ariance. At test time, each shape is presented at a single
rotation. For reconstruction, we show results on extreme
settings: no-rotation (I) – the standard evaluation setup for
prior methods, and arbitrary rotations SO(3). Since out-
puts in this task are static and optimization for each shape
takes multiple iterations at both train and test times, here
the SO(3) random rotations are generated for each shape
in a pre-processing stage and all shapes stay at fixed poses
during training.

Network implementations. In classification and segmen-
tation, we implement our VN networks in the identical ar-
chitectures to their classical counterparts, but with each
layer in the shape of ⌊N

3 ⌋×3 while the corresponding layer
in the scalar network has size N . This in fact greatly re-
duces the number of learnable parameters in VN networks,
resulting in roughly ⩽ 2/32 = 2/9 times of parameters
compared to the counterpart scalar networks – here the fac-
tor 2 in the numerator is because in nonlinearities two com-
ponents q,k are both learned (Equation 5). In reconstruc-
tion we slightly extend the layer size for the VN encoder.
Moreover, in VN-PointNet, we discard the input spatial
transformation MLP which learns 3× 3 transformation ma-
trices as our VN network already takes rigid transforma-
tions into consideration by construction. In the following
experiments, we use mean pooling as aggregation in all net-
works, which performed better in practice. We will discuss

more about the max pooling as well as ablation study on
other structures in the supplementary material.

Methods z/z z/SO(3) SO(3)/SO(3)

Point / mesh inputs

PointNet [27] 85.9 19.6 74.7
DGCNN [38] 90.3 33.8 88.6
VN-PointNet 77.5 77.5 77.2
VN-DGCNN 89.5 89.5 90.2

PCNN [2] 92.3 11.9 85.1
ShellNet [44] 93.1 19.9 87.8

PointNet++ [28] 91.8 28.4 85.0
PointCNN [21] 92.5 41.2 84.5

Spherical-CNN [12] 88.9 76.7 86.9
a3S-CNN [22] 89.6 87.9 88.7

SFCNN [29] 91.4 84.8 90.1
TFN [35] 88.5 85.3 87.6

RI-Conv [43] 86.5 86.4 86.4
SPHNet [26] 87.7 86.6 87.6

ClusterNet [6] 87.1 87.1 87.1
GC-Conv [45] 89.0 89.1 89.2

RI-Framework [19] 89.4 89.4 89.3

Point + normal inputs

SFCNN [29] 92.3 85.3 91.0
LGR-Net [46] 90.9 90.9 91.1

Table 1: Test classification accuracy on the ModelNet40
dataset [41] in three train/test scenarios. z stands for aligned
data augmented by random rotations around the vertical
axis and SO(3) indicates data augmented by random rota-
tions.

5.1. Classification – Table 1

We evaluate classification results on ModelNet40 com-
pared with vanilla PointNet, DGCNN, and other rotation
invariant or equivariant methods which takes point coordi-
nates (meshes or pointclouds) as inputs. Compared with
their non-equivariant counterparts, the VN networks attain
consistently good results on all the three settings, which
indicates their robustness over rotations, especially in the
z/SO(3) case where the test set contains unseen rotations
in the train set. Even in the SO(3)/SO(3) case with abun-
dant train-time data augmentation, the rotation sensitive
networks cannot perform as well as the equivariance by con-
struction in VN networks. One the other hand, our VN net-
work with DGCNN backbone (VN-DGCNN) outperforms
all other equivariant or invariant methods with only point
coordinate inputs in the z/SO(3) and SO(3)/SO(3) cases.
Note that methods that use surface normals [29, 46] still
achieve better slightly better results.
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Methods z/SO(3) SO(3)/SO(3)

Point / mesh inputs

PointNet [27] 38.0 62.3
DGCNN [38] 49.3 78.6
VN-PointNet 72.4 72.8
VN-DGCNN 81.4 81.4

PointCNN [21] 34.7 71.4
PointNet++ [28] 48.3 76.7

ShellNet [44] 47.2 77.1

RI-Conv [43] 75.3 75.3
TFN [35] 76.8 76.2

GC-Conv [45] 77.2 77.3
RI-Framework [19] 79.2 79.4

Point + normal inputs

LGR-Net [46] 80.0 80.1

Table 2: ShapeNet part segmentation. The results are re-
ported in overall average category mean IoU over 16 cate-
gories in two train/test scenarios. With z, we refer to data
augmented only by random rotations around the vertical
axis, and SO(3) indicates random rotations.

5.2. Part segmentation – Table 2

Table 2 shows our results in ShapeNet part segmentation.
Again our method shows consistent results across different
rotations and achieves best performance with VN-DGCNN
compared with other works, including [46] that uses surface
normals in addition to the point coordinates.

5.3. Neural implicit reconstruction – Table 3

We follow the pointcloud completion experiment from
OccNet [24], where we reconstruct neural implicit func-
tions from sparse and noisy input pointclouds: we sub-
sample 300 points from the surface of each (water-tight)
ShapeNet model, and perturb them with normal noise with
zero mean and 0.005 standard deviation. The outputs are
occupancy probability functions O : R3 → [0, 1] which
can be parameterized by a shared neural implicit function
hθ(· |z) : R3 → [0, 1] conditioned by a latent code z de-
rived from the input point set. For fair comparisons, we
retrain the original OccNet [24] together with our methods
for 300k iterations, and select the models with the best per-
formance on the validation set.

Encoder network. We build an encoder-decoder frame-
work with the architecture similar to [24] but in the lan-
guage of VN. The encoder is rotation equivariant, encoding
a pointcloud {x1,x2, · · · ,xN} into a global vector-list fea-
ture Z ∈ RC×3. While in Mescheder et al. [24] the encoder

is a PointNet, here we use a VN-PointNet:

Z = VN-PointNet({x1,x2, · · · ,xN}). (22)

Decoder network. The decoder is rotation invariant be-
tween vector-list latent code Z ∈ RC×3 and query point
coordinate x ∈ R3 – if the shape and the query point
are simultaneously rotated, the occupancy value stays un-
changed. We define the decoder as a function on the three
invariant features ∥x∥2, ⟨x,Z⟩,VN-In(Z):

O(x |Z) = ResNet([⟨x,Z⟩, ∥x∥2,VN-In(Z)]), (23)

where VN-In(·) is the VN invariant layer defined in Sec-
tion 3.5. As an ablation study, we also replace VN-PointNet
with a standard PointNet encoder (with the same invariant
decoder), where the encoder generates latent codes z ∈ RC

and we reshape them into Z ∈ R(C/3)×3.
On the contrary, the decoder in [24] is a simple non-

linear function O(x | z) = h(φ(x), ψ(z)), which given la-
tent code z ∈ RC and query point x ∈ R3 outputs an occu-
pancy probability O ∈ [0, 1] 3.
Quantitative results – Table 3. We evaluate the volumetric
mean IoU of the reconstructions in the three train/test set-
tings. Compared with the original OccNet, our equivariant-
encoder/invariant-decoder exhibits excellent coherence in
reconstructing shapes in any poses, with a minor loss in ac-
curacy in the I/I case. Even simply adopting the invariant
decoder without an equivariant encoder slightly improves
the performances in all the three settings.
Qualitative results – Figure 6. We show some reconstruc-
tions from the test set using the original OccNet (light pink)
and our VN-OccNet (yellow). Meshes are extracted from
the neural implicits using the Multi-resolution IsoSurface
Extraction (MISE) method from Mescheder et al. [24]. Al-
though OccNet better recognizes the fine details in the I/I
case when the dataset is pre-aligned, it is extremely sensi-
tive to rotations. In the I/SO(3) case when unseen rotations
are applied at test time, OccNet totally fails by hardly learn-
ing anything meaningful; these findings are also consistent
with those in Deng et al. [9]. Even in the SO(3)/SO(3)
case when data augmentation is adopted at train time, it still
shows its limitation by generating blurry shapes (top left),
averaged shapes (top right, the box-like output consists of
sofa features averaged from different poses), or shapes with
incorrect priors (bottom right, a shape in the car class is
falsely identified as a chair).

6. Conclusions
We have introduced Vector Neurons – a novel framework

that facilitates rotation equivariant neural networks by lift-
ing standard neural network representations to 3D space. To

3[24] provides multiple versions of decoders. We select this simplest
one in our experiments for easier comparisons.
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Methods Encoder Latent code Decoder I/I I/SO(3) SO(3)/SO(3)

OccNet [24] PointNet z ∈ RC h(φ(x), ψ(z)) 71.4 30.9 58.2

- PointNet Z ∈ R⌊C/3⌋×3 h(⟨x,Z⟩, ∥x∥2,VN-In(Z)) 72.0 31.0 59.4
VN-OccNet VN-PointNet Z ∈ R⌊C/3⌋×3 h(⟨x,Z⟩, ∥x∥2,VN-In(Z)) 69.3 69.3 68.8

Table 3: Volumetric mIoU on ShapeNet reconstruction with neural implicits. We show results on extreme settings: no-rotation
(I) – the standard evaluation setup for prior methods, and arbitrary rotations SO(3). Here the SO(3) random rotations are
generated for each shape in a pre-processing stage and all shapes stay at fixed poses during training.

Figure 6: Reconstruction results on ShapeNet with OccNet (light pink) and VN-OccNet (yellow). Meshes are extracted from
the neural implicits using the Multi-resolution IsoSurface Extraction (MISE) method.

that end, we have introduced the vector-neuron counterpart
of standard network modules: linear layers, non-linearities,
pooling and normalization. Using our framework, we have
built a rotation-equivariant version of two leading point-
cloud network backbones: PointNet and DGCNN, and eval-
uated them on 3 tasks: classification, segmentation and re-
construction. Our results demonstrate a consistent advan-
tage to our modified architecture when the input shapes pose
is arbitrary, compared to an augmentation based approach.
Limitation and future work. While our method shines un-
der arbitrary rotation settings, on aligned input shapes and
specifically in the task of reconstruction, our VN-OccNet
was not able to match the reconstruction quality of vanilla
OccNet by a small margin. In future works we plan to in-
vestigate this matter.

In this work, we have focused on 3D pointcloud net-

works, yielding permutation and rotation equivariant archi-
tectures. However, it should be clear that our framework has
obvious generalizations to higher-dimensional pointclouds
in a completely analogous way. Generalization of vector
neurons to other transformation groups of interest, such as
the full affine group, can also be investigated (the addition
of uniform scalings in our framework is quite straightfor-
ward).

In summary, by making rotation equivariant modules
simple and accessible we hope to alleviate the need to cu-
rate and pre-align shapes for supervision and inspire future
research on this fascinating topic.
Acknowledgements. We gratefully acknowledge the sup-
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